
Analyzing Comment-induced Updates on Stack
Overflow

Abhishek Soni
Independent Researcher, India
abhisheksoni2720@gmail.com

Sarah Nadi
University of Alberta, Edmonton, Canada

nadi@ualberta.ca

Abstract—Stack Overflow is home to a large number of techni-
cal questions and answers. These answers also include comments
from the community and other users about the answer’s validity.
Such comments may point to flaws in the posted answer or
may indicate deprecated code that is no longer valid due to API
changes. In this paper, we explore how comments affect answer
updates on Stack Overflow, using the SOTorrent dataset. Our
results show that a large number of answers on Stack Overflow
are not updated, even when they receive comments that warrant
an update. Our results can be used to build recommender systems
that automatically identify answers that require updating, or even
automatically update answers as needed.

I. INTRODUCTION

Stack Overflow (SO) is currently an essential resource for
software developers. Answers to already solved questions
as well as the ability to post your own question and get
feedback from developers all around the world makes it a
popular platform that facilitates software development. Up-to-
date information is important for any developer that comes
to Stack Overflow looking for an answer to the problem they
are facing. Answer posters can update their posted answers
over time for a variety of reasons, such as API changes [1],
flaws discovered in the code snippets later [2], or a revelation
of a better way of solving the same problem. At the same
time, users may leave comments on posted answers to point
out, for example, code deprecation or reasons why the code
snippet posted in the answer does not work.

The relationship between comments and updates is currently
not clear. Are there comments that result in answer updates?
If so, what kind of updates are typically requested? Do the
answer posters typically update their answers based on the
feedback? To the best of our knowledge, previous work that
looked at Stack Overflow data only considered comments to
determine user expertise or developer interactions (e.g., [3]–
[5]), but did not consider the relationship between comments
and answer updates. Understanding these relationships can
help in developing automated recommender systems that either
prompt answer posters to update their answers or warn SO
users from using answers that still require updating.

In this paper, we use the SOTorrent dataset [6] to analyze
how comments affect answer updates on Stack Overflow. We
analyze answer updates and comments from SO questions
tagged with with the top five tags: java, javascript,
python, php, android. Using this data, we answer the
following research questions (RQs).

RQ1. How often do comments induce answer updates?
We find that, on average across five languages we analyzed,
only 4.6% of the comments we studied result in an answer
getting updated. About 38% of the comments do not warrant
an update and 8.7% of the comments contain only text and/or
other discussion.

RQ2. How often are comments ignored, even though
they warrant an answer update? On average across the five
tags we analyzed, 27.5% of the comments warrant an update
but are ignored by the original posters of the answers. This
suggests a need for techniques that can automatically update
these answers, or at least tag them as requires update so SO
users are aware before using them.

II. CONSIDERED DATA

The SOTorrent dataset [6] contains 42M Posts from Stack
Overflow, along with their fine grained edit histories. For
the purposes of our work, we consider only a subset of
this data. Specifically, we consider the top five tags on
SO, java, javascript, python, php, android,
and collect their relevant comment and answer update data
as follows.

We use the following subset of SOTorrent tables for our
analysis: Posts, Comments, PostBlockVersion,
PostHistory. Our starting point for data collection is a
given SO tag we are interested in analyzing. Given a tag, we
follow the steps shown in Algorithm II. We store the data we
collect in our own temporary database for faster analysis.

Algorithm 1 Data Acquisition from SOTorrent
1: Select all questions with given TAG
2: Select all answers to questions selected in Step 1.
3: Select all Comments posted to these answers
4: Select all edits made to these answers, provided there is

a code block inside the answer and that it has changed.

First, we select IDs of all questions that have a particular tag
(e.g., java, python, etc.) Corresponding to the questions, we
select all the AnswersIDs associated with them. We then query
the Comments table and collect all comments corresponding
to the AnswerIDs we previously collected.

To collect the code block edits made to the answers, we use
the PostBlockVersion table and PostHistory table
from SOTorrent. To answer our research questions, we need

to relate comments to answer updates. In other words, we are
trying to identify when an answer was updated due to a com-
ment being posted. To be able to identify such relationships
as precisely as possible, we focus only on answer updates that
involve updating a code snippet. We ignore updates where only
text has changed. Accordingly, we select only edits made to
code blocks present in the answer. Such code block updates
can be identified using the PredEqual field which indicates
if a particular code block has changed or not. Consequently,
we select only edits where the PredEqual was either NULL
(when the post was first created) or FALSE (the code block
changed.)

III. RELATING COMMENTS TO ANSWER UPDATES

Now that we have the full collection of comments and
answer updates for all threads of interest, we need to map com-
ments to answer updates. We do so in two steps. The first step
identifies candidate comments that may have caused an update.
In this step, we do a simple grouping of comments and answer
updates based on the time the comment occurred w.r.t the edit.
The second step applies three different heuristics whose goal is
to analyze the content of the candidate comments and updates
to come up with a more concrete relationship. Note that we
first check if the comments contains any code elements. If it
does not, we try to find any special keywords/phrase it may
have. If the comment does not pass either of those criteria, it
is simply discarded.

A. Identify Candidate Comments

The essential premise for the first step of mapping is that
a comment could have caused an answer update only if it
occurred before the update. We also assume that a comment
is potentially related to the nearest update that happens after
it. For example, assume the following events occurred in order
where up denotes an answer update and c denotes a comment:
up0, c1, up1, c2, c3, up2, up3. In this case, the
candidate comments for up1 are {c1}, the candidate com-
ments for up2 are {c2, c3}, and the candidate comments
for up3 is empty {}. Note that up0, the first edit in the list,
is actually the creation of the post and no comment can exist
before the answer itself is created. We ignore this first update
in our processing.

For each answer, we iterate over all its edits and map each
comment to an edit, according to the criteria described above.
Note that, as the example illustrates, we map each comment
to exactly one edit. However, each edit may have multiple
comments mapped to it. If no edit was made to the answer
after the creation date of the comment, we map the comment to
a dummy edit. This would allow us to still take these comments
into account in later steps. At the end of this step, we have a
processed list of comments that may have induced an update.
Such a mapping allows us to later reason about the relationship
between comments and edits.

For each edit, we collect all the code blocks present in
the content field of the current edit. The content field
contains the code after the update/edit occurred. To identify

the changes that happened in edit upi+1, we consider the
content of upi+1 as curr_content. We then collect
all the code blocks present in the previous edit upi and call
it prev_content. We will later look for code elements
present in the comment text as well as these two contents
(prev_content & curr_content) which will help us
label comments.

B. Categorize Comments

1) Categories of Comments: Before running our analysis,
we had manually sampled comments from Stack Overflow to
understand what types of comments exist in practice. We came
up with four main categories that relate comments to updates.

1) WARRANT UPDATE: A comment that warranted an
update (e.g., “You should use fs instead of path as
it is more reliable.”) but an edit was not made to the
answer.

2) UPDATE: A comment that warranted an update (e.g.,
“You should use fs instead of path as it is more
reliable.”) and an edit was made to the answer.

3) NO UPDATE: A comment that did not warrant an
update (e.g., “makeRequest is indeed the correct
method to use in this case. Thanks!”)

4) UNKNOWN: All other comments that are just text,
urls or discussion (e.g., “Thank you so much for this
wonderful answer.”).

Based on the above categories we had defined, we design
three different heuristics that allow us to automatically cat-
egorize comments. Note that all these heuristics apply only
on candidate comments where the comment contains a code
element, happened before the update, and potentially caused
the update based on its proximity to the update. We apply the
three heuristics in order.

Along with labeling the comments with one of the cate-
gories above, we also mark which heuristic resulted in the
labeling. For the first heuristic, we mark the labeling cause
as CODE. For the other two heuristics, we mark the labeling
cause as KEYWORD.

2) Heuristic 1: Code Checks: This check is based on the
following hypothesis: A comment can be classified as an
UPDATE if it contains a code element that is not present in
both prev_content or curr_content. Our reasoning is
that if a candidate comment mentioned a code element that
was not present before but then got added to the answer
after the update, then it is likely that this change is in
response to the comment. Since an edit can add or remove
code elements from the answer based on what is suggested
in the comment, we check for both directions: (a) a code
element mentioned in the comment getting added, and (b) a
code element mentioned in the comment getting deleted. If a
code element from the comment is found in curr_content
but not in prev_content or vice versa, we label that
comment as UPDATE. If it is found in both curr_content
and prev_content, we label it as NO_UPDATE. Note that
this process is repeated for each code element found in the
comment. The whole comment is labeled as UPDATE if at

TABLE I
TOTAL ANSWERS AND COMMENTS ANALYZED FOR EACH TAG, AS WELL AS THE DISTRIBUTION OF TYPES OF COMMENTS

Tag Total Answers Total Comments Discarded Comments No Update Update Warrant Update Unknown

java 179,482 330,904 67,102 (20.28%) 123,809 (37.42%) 14,339 (4.33%) 97,077 (29.34%) 28,577 (8.64%)

python 158,778 297,057 62,597 (21.07%) 107,419 (36.16%) 16,045 (5.40%) 82,643 (27.82%) 28,353 (9.54%)

javascript 198,060 393,490 88,264 (22.43%) 149,242 (37.93%) 19,463 (4.95%) 99,996 (25.41%) 36,525 (9.28%)

android 137,400 279,782 54,930 (19.63%) 107,522 (38.43%) 12,579 (4.50%) 80,086 (28.62%) 24,665 (8.82%)

php 96,914 174,740 37,165 (21.27%) 70,673 (40.44%) 7,431 (4.25%) 46,039 (26.35%) 13,432 (7.69%)

least one code element from the candidate comment is updated
in the answer. Also note that our search function uses regular
expressions to match code elements that are function calls as
functions mentioned in comments do not always map exactly
to functions in the code snippet since they may not necessarily
mention the complete parameter list (e.g., “comment foo
takes two parameters..” while the code snippet has foo(x)).

3) Heuristic 2: Keyword/Word Phrase Checks: If the label
from the previous Code Check heuristic is not UPDATE, or
if the comment does not contain any code elements, we then
check for the presence of specific keywords in the comment.

Based on our manual sampling, we had also compiled
a list of word phrases/keywords that are related to update
suggestions. Some examples of the comments we observed
from various answers (in varying forms) are:

• This answer should be updated.
• Please update your answer.
• The code to change the path needs to be changed.
Based on such observations, we create a list of regular

expressions to encode the word patterns that explicitly indicate
that an update is requested or needed, as follows:

word patterns=[’needs(.+?)(update)’, ’be(.+?)(renamed|replaced|
↪→ updated|improved|changed)’, ’update(.+?)(answer)’, ’
↪→ change(.+?)(to)’, ’v\d+.\d+.\d+’]

The last RegEx is used to find any version number mentions
in the comments. The mention of a version number is a strong
indicator of API changes being discussed and, hence, is a
useful word pattern.

In this second-step heuristic, we search for these word
patterns in each comment. The search terminates either
if it finds a match, or it exhausts the list of word pat-
terns. If a match is found, we check if prev_content
is equal to curr_content. (i.e., if the content has not
changed.) If the content has changed, we label the comment
as UPDATE. If it has not changed, we label the comment as
WARRANTS_UPDATE.

4) Heuristic 3: Question Checks: If a comment has still not
received a label until this point, we run one additional check on
it. During manual sampling, we noticed a class of comments
that had the following basic structure: INTERROGATIVE
WORD --- VERB --- CODE? For example, “Why are you
using makeRequest here?”

In these kind of comments, we observed that the commenter
was trying to find out more about how the code works. It

was, sometimes, also done to derive more information from
the original poster about how the posted code snippet works.
These comments can be classified as WARRANTS_UPDATE
if we can confirm that the commenter is not merely asking
more about the code snippet and has actually found a flaw
in the code. We only run this third heuristics if the code has
not changed in the answer update. We search for the pattern
structure described above. If we find such a pattern, we label
that comment as WARRANTS_UPDATE; otherwise, we label
the NO_UPDATE.

To validate our heuristics, we randomly select 100 posts and
run them through our system. Then, we sample 30 random
posts out of the selected ones and manually verify the com-
ment’s labels. We find that around 85% of the comments have
been correctly identified. We also observe that the most com-
mon mismatch case occurs between WARRANTS_UPDATE
and NO_UPDATE. In the future, we plan to investigate better
heuristics to differentiate those cases better.

IV. RESULTS

For our analysis, we select the top five language tags on
SO: java, javascript, python, php, android.
For each tag, we select all questions where the score (number
of upvotes on SO) is 5 or more. We observe that questions with
more upvotes on SO are more likely to attract more users in
the community. They in turn have a higher number of answers
posted to them, which consequently means a higher chance
of comments on the answers. Since the goal of our work is
to study the relationship between comments and updates, we
need to ensure that we have enough of both in our dataset.
We then select all answers from the selected questions for
each language tag. For example, in the case of JavaScript, our
dataset contains approximately 0.2M answers, with the number
of related comments being almost 0.4M.

Table I shows the complete statistics for our dataset. The
table also shows the number of different comment types in
each language. Figure 1 visualizes the percentage of each
comment category against each tag. The system discards about
∼ 23 − 24% comments because they (a) do not contain any
code element and (b) do not contain any special keyword etc.
These are different from UNKNOWN as the latter is processed
by the pipeline but cannot be labelled accurately.

Based on Table I and Figure 1, we can see that the
percentage of comments that resulted in an update are quite

Fig. 1. Labeled Comments

TABLE II
REASON OF COMMENT LABELING

Tag Code Keyword

java 253,770 10,032

python 225,899 8,561

javascript 291,108 14,118

android 214,776 10,076

php 132,088 5,487

low (mostly ∼ 4−5% across the five tags). On the other hand,
many of the comments (∼ 36− 40%) are in the NO_UPDATE
category. This suggests that these are more general comments
or clarifications rather than comments that point out problems
with the answer or suggest better code elements to use.

Finding 1: Many of the posted comments do not require an
update (∼ 36− 40%), while only a few (∼ 4− 5%) actually
resulted in answer updates.

We now look into the WARRANT_UPDATE category. This
category is the most interesting as it gives an indication into the
extent of outdated or wrong answers on Stack Overflow. We
can see that more than quarter of the comments (∼ 26−29%)
are in the WARRANT_UPDATE category. This means that the
comment pointed out something that needs to be updated in
the answer, but the answer poster has not updated their answer
accordingly. Up-to-date information is vital for any user or
developer that comes on the website. Our finding suggests
that there is potential for automated systems that automatically
detect and/or flag outdated or wrong answers to improve the
use of information found on Stack Overflow.

Finding 2: More than a quarter of the comments we studied
across the five tags (∼ 26 − 29%) require the answer to be
updated, but are ignored by answer posters.

To help future work build on and improve our heuristics, we
show the heuristic type (code check vs. keyword check) that
resulted in the labeling of comments in Table II. As shown,
most of the labeling was facilitated by the code checks. Only
a small percentage of classifications involved the need for

keyword/word phrases. This suggests that focusing on the code
check heuristics and making them more precise is promising.

Finding 3: Code check heuristics seem to be more promising
in labeling comments.

V. THREATS TO VALIDITY

We now discuss potential threats to the validity of our
results.

False Positives A comment can be mislabeled if the code
element in the comment is not correctly identified by our sys-
tem. The keyword/word phrases list we use is not exhaustive,
and it is possible that we may have missed some of them.

Analyzing the entire dataset We run our pipeline only on
a subset of threads, based on score, for the language tags we
selected. Since questions with a higher score tend to receive
more comments, this gave us more comments to work with
for this challenge paper. In the future, we plan to run our
analysis on the entire data set, while investigating additional
heuristics. Additionally, we only focused on comments and
answer updates involving code, since the code elements pro-
vide a starting point for matching comments to updates. Thus,
our reported numbers are a lower bound, since some of the
discarded comments could be comments that resulted in an
update or warrant an update.

Closely occurring updates In order to get the candidate
comments for an update, we assume that the comment must
belong to the nearest edit. It is possible that multiple edits are
made within a very small frame of time. In that case, it is
quite possible that the actual code correction took place in the
second edit. However, in our current setup, the comments will
belong only to the first edit. We plan to investigate how often
this edge case occurs and find heuristics to deal with it.

Heuristics All our matching criteria rely on heuristics. We
manually sampled the results to verify that they work well.
However, this also means that false positives or false negatives
may occur. We decided to err on the side of precision: if we
cannot precisely identify the relationship between a comment
and update, we marked it as unknown.

VI. CONCLUSION

Comments are an integral part of Stack Overflow. They
are a form of communication between users and help correct
flaws in posted answers. However, our study shows that a large
percentage of comments warrant an update, but are ignored by
the original poster of the answers. Our results suggest the need
to build automated systems that help Stack Overflow users
pick the right answer without going through the comments
or testing the code in the answer manually. We can also build
systems that automatically notify posters of the need to update
their answers, when required. In the future, we will expand our
work and look at the updates that are caused by comments on
a finer granularity level to check what type of updates are
mostly prompted by comments (e.g., API Changes, flaw in
code, etc.).

REFERENCES

[1] C. Ragkhitwetsagul, J. Krinke, and R. Oliveto, “Awareness and experience
of developers to outdated and license-violating code on stack overflow:
An online survey,” arXiv preprint arXiv:1806.08149, 2018.

[2] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[3] J. Yang, K. Tao, A. Bozzon, and G.-J. Houben, “Sparrows and owls: Char-
acterisation of expert behaviour in stackoverflow,” in International Con-
ference on User Modeling, Adaptation, and Personalization. Springer,
2014, pp. 266–277.

[4] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and C. Falout-
sos, “Analysis of the reputation system and user contributions on a
question answering website: Stackoverflow,” in Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. ACM, 2013, pp. 886–893.

[5] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM, 2013, pp. 1019–1024.

[6] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the origin,
evolution, and usage of stack overflow code snippets,” in Proceedings
of the 16th International Conference on Mining Software Repositories
(MSR 2019), 2019.

